But unless a node needs to execute every transaction or easily query historical data, there’s really no need to store the entire chain. This is where the concept of a light node comes in. Instead of downloading and storing the full chain and executing all of the transactions, light nodes download only the chain of headers, from the genesis block to the current head, without executing any transactions or retrieving any associated state. Because light nodes have access to block headers, which contain hashes of three tries, they can still easily generate and receive verifiable answers about transactions, events, balances, etc.
The reason this works is because hashes in the Merkle tree propagate upward — if a malicious user attempts to swap a fake transaction into the bottom of a Merkle tree, this change will cause a change in the hash of the node above, which will change the hash of the node above that, and so on, until it eventually changes the root of the tree.
"Peter Todd, a Bitcoin Core developer, concerns what we can say is a fundamental technical argument from small blockers. They argue we can not scale on-chain, because we can not have light-client nodes, because we can not construct what is called fraud proofs."
Vitalik Buterin and Peter Todd Go Head to Head in the Crypto Culture Wars
https://medium.com/@preethikasireddy/how-does-ethereum-work-...
Quote:
But unless a node needs to execute every transaction or easily query historical data, there’s really no need to store the entire chain. This is where the concept of a light node comes in. Instead of downloading and storing the full chain and executing all of the transactions, light nodes download only the chain of headers, from the genesis block to the current head, without executing any transactions or retrieving any associated state. Because light nodes have access to block headers, which contain hashes of three tries, they can still easily generate and receive verifiable answers about transactions, events, balances, etc.
The reason this works is because hashes in the Merkle tree propagate upward — if a malicious user attempts to swap a fake transaction into the bottom of a Merkle tree, this change will cause a change in the hash of the node above, which will change the hash of the node above that, and so on, until it eventually changes the root of the tree.