Hacker Newsnew | past | comments | ask | show | jobs | submit | PeterHolzwarth's commentslogin

The two rode on each-other's coat tails during their ascent. Lucas was happy to give a "yeah, I was totally thinking that!" when people would point out some classic hero stuff in his simple little wonderful space opera (not damning with faint praise here - Star Wars is a ridiculously wonderful film!).

And Campbell knew a good thing when he saw it, happy to agree that Lucas' film represented a hero's journey.

This was a time when Campbell's writing was entering broad pop consciousness and his speaking engagement schedule was starting to grow: the massive popularity of Star Wars was a great ship to catch a ride on.

People wanted to see a depth in Star Wars that caught Lucas off guard (remember that he just wanted to replicate the exciting, cliff-hanger kids serials of his 1950s childhood). He decided to go with it, saying it was all part of a big plan, "I have ten movies with their stories all plotted out" etc. The reality is he cobbled things together ad-hoc and kind of quickly, with no real overarching intent - something he only decades later finally admitted.

I feel for him: in his mind, he was just a nuts-and-bolts technology guy who loved the "how would I make that?" questions and work far far more than the story he had to come up with to tell. He freely admitted he hated writing. If he had it his way, he would have merely been the head of ILM, excitedly figuring out ways to use new technology to solve film making problems, but Star Wars blew up on him, becoming an over-the-top ultra-success.

The real connection between Lucas and Campbell was nearly non-existent, but it was a useful thing for each of them to strategically latch on to as their popularity began to rapidly grow.


If it wasn’t for THX-1138 you cynicism might be warranted. The other factor is that the simple matinees are just as tied to the hero’s journey as Star Wars. The hero’s journey is tied to stories from the beginning of storytelling. Lucas experienced his own hero’s journey in producing the movie.

Finally from what I know Cambell ended up living on Skywalker Ranch. I see no reason to minimize connection.


Campbell believed all stories were the Hero's Journey in some convoluted manner or another. Could tell him you tripped down the stairs, and he'd say something like, 'yes, but going down those stairs again would be you learning to conquor your fears, thus resulting in a more well rounded person.'

Or you could say 'I should stop drinking milk, because I'm somewhat intolerant' and he'd say, 'ahh, yes, you're in the middle of the hero's journey, on the precibus of learning to set your desires aside for the betterment of your health'

Any story with conflict becomes the hero's journey, and what stories worth telling don't have some kind of conflict. 'Proto-story' nonsense.


precipice, not 'precibus'

This is an interesting take. Did Lucas ever actually admit he didn’t know about *The Hero with a Thousand Faces* before he wrote Star Wars? My understanding is he read Campbell after the motorcycle accident, and then it became a big influence.

Either way, I wouldn’t be surprised if Campbell was the one making the connections—between Life of Milarepa (which, in my opinion, is the closest pre Campbell example of the hero’s journey to Campbell’s original framing) and The Wizard of Oz. Meaning the stories all have the parts of the journey but the Life Milarepa has a 1 to 1 correlation.


Can you share some links to substantiate these claims that lucas didn't have a clue as to what he was doing, and moreover hadn't been infuenced by Campbell? Because I've paid quite a lot of attention to both of them, and thats completely contrary to what I've understood. Moreover, the OP link and it's follow-on say otherwise.

I think it may be all summed up by Roy Amara's observation that "We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run."


I think this is the most-fitting one-liner right now.

The arguments going back and forth in these threads are truly a sight to behold. I don’t want to lean to any one side, but in 2025 I‘ve begun to respond to everyone who still argues that LLMs are only plagiarism machines, or are only better autocompletes, or are only good at remixing the past: Yes, correct!

And CPUs can only move zeros and ones.

This is likewise a very true statement. But look where having 0s and 1s shuffled around has brought us.

The ripple effects of a machine doing something very simple and near-meaningless, but doing it at high speed and again and again without getting tired, cannot be underestimated.

At the same time, here is Nobel Laureate Robert Solow, who famously, and at the time correctly, stated that "You can see the computer age everywhere but in the productivity statistics."

It took a while, but eventually, his statement became false.


The effects might be drastically different from what you would expect though. We’ve seen this with machine learning/AI again and again that what looks probable to work doesn’t work out and unexpected things work.


Just an innocent bystander here, so forgive me, but I think the flack you are getting is because you appear to be responding to claims that these tools will reinvent everything and introduce a new halcyon age of creation - when, at least on hacker news, and definitely in this thread, no one is really making such claims.

Put another way, and I hate to throw in the now over-used phrase, but I feel you may be responding to a strawman that doesn't much appear in the article or the discussion here: "Because these tools don't achieve a god-like level of novel perfection that no one is really promising here, I dismiss all this sorta crap."

Especially when I think you are also admitting that the technology is a fairly useful tool on its own merits - a stance which I believe represents the bulk of the feelings that supporters of the tech here on HN are describing.

I apologize if you feel I am putting unrepresentative words in your mouth, but this is the reading I am taking away from your comments.


This is why I don't by alcohol online for delivery: the delivery person is required by their company to scan my ID. Places I order from already know enough about me - they don't also need a copy of my identification.


I bought a rackmount case on ebay that for some reason got shipped "Adult signature required", which is seemingly for alcohol shipments. The Fedex delivery guy repeatedly pestered me to scan my ID. I had already shown him my ID, signed for the package, and had possession of it. But he didn't speak English and couldn't understand me telling him we were done, so he just kept repeating "scan" and shoving the terminal at me. He also kept trying to steal the package back from me as if it hadn't been delivered, and I had to keep getting very aggressive to make him back off. He then insisted I speak to his supervisor on his phone (the ones who are now unreachable when you have a problem). The supervisor then continued badgering me about their policies and threatening to call the police (I told him go right ahead). Eventually they did give up and leave. No police ever showed up, and Fedex continues to deliver to me just fine. What an all around dystopian nightmare, though.


>"He then insisted I speak to his supervisor on his phone (the ones who are now unreachable when you have a problem)"

Soon, a chat only chatbot accessible through a widget on their app. Or worse a phone you call, but it's just an LLM with a TTS wrapped around it.


I think much of it is just LLM/TTS at this point. But even well before then it was a call center agent who would put in a "ticket" for nobody to call you back.


Couldn't most of that encounter have been avoided by just walking back inside your home with your package and closing the door? I don't understand why you'd even want to engage with someone like that.


Maybe?

But first, that's generally not how I operate.

Second, just because I went back inside the house doesn't mean that the situation would magically be over - they'd still be outside, right? And I'd have to monitor them until they left.

Third, it seems doing that would have encouraged them to pigeonhole the situation into the usual problem of "package getting stolen" for which they presumably do call the police and frame the situation that way. The police coming would then make for an escalated situation which I would have to deal with. Heck with the way police often defer to the status quo of how businesses frame problems, they might have even insisted I follow Fedex's desired procedure of scanning my ID despite it being legally unnecessary.

One of the big problems here is companies deploying user-facing agents that can't even communicate in the common language. There is another driver whom I've tried a few times now simply to work with her to get packages delivered (eg I'll bring them in from the street because I'm in the middle of shoveling snow), but communication is needlessly difficult. I'm sure many of the destructionists are faced with similar frustrations and then go on to blame "illegals", as if purifying society will compensate for bad incentives. But as usual, it's actually the corpos pitting us against one another in a race to the bottom.


Interesting. I order alcohol online and have never had that happen.


In the UK all delivery apps [0][1][2] will prompt the driver/rider to ask for ID when the customer purchases age-restricted items like alcohol or cigarettes.

I am not sure why the apps don't get the customer to upload a photo of their ID once rather than get the delivery person to request it for every restricted order?

It wastes so much time:

https://www.youtube.com/watch?v=NYEC_ooaC5A

https://www.youtube.com/watch?v=ILzfEaSiYf4

[0] https://riders.deliveroo.co.uk/en/delivering-alcohol

[1] https://help.uber.com/en-GB/ubereats/restaurants/article/how...

[2] https://courier-help.just-eat.co.uk/hc/en-gb/articles/103290...


Well, yeah, they ask to see ID, but they don't scan it. (I'm in the US though.)

They certainly have those for radars! Although the reason for using them is different.

https://en.wikipedia.org/wiki/Corner_reflector


Well, instead of repeating myself manually, I'll paste in a comment of mine here from a past discussion on carbon capture:

It's easy to forget why there is a bit of a challenge to getting C02 out of the air: there's so little of it, comparatively.

In order, air is, broadly, made up of the following:

Nitrogen: %78.084

Oxygen: %20.946

Argon: %00.934

CO2: %00.042

The stuff is essentially beyond a rounding error - it really gives one an appreciation of the "either don't release it, or capture it at the point of release" sentiment, and for the difficulties in making carbon capture outside of these scenarios be even slightly cost-effective.


Also more fundamentally it's always going to be more efficient to not produce CO2 than to unproduce it.

Ok maybe in a small number of circumstances there's no other option (e.g. planes), but mostly you're far better off spending your energy making solar, wind, batteries, heat pumps, insulation etc.


In today's world there is a roadmap for a < 20 year transition for the entire world if planned and executed collectively.

However Chinese domination, global geopolitics being changed and fossil fuel industries and countries still being extremely large and powerful make even choosing the obviously cheapest (and incidentally clean) option difficult in many parts of the world.

Nonetheless, it seems much more optimistic today in 2025 than say 2015 speaking purely based on where technology stands


> However Chinese domination .. make even choosing the obviously cheapest (and incidentally clean) option difficult in many parts of the world.

In what way? China has basically dwarfed solar installations of any other country combined for the last two years, and produces so many panels and so cheap that EU and US competitors are being driven out of business.

China might be the reason we CAN make the transition actually.


Probably thinking that if it appears China is getting global dominance in energy production/energy storage/car manufacturing, the West would block imports out of political and economic expediency. Like the current US administration is doing.


That’s why not cutting off the nose to spite the face.

The cat is out of the bag and renewables and storage is the new cheapest globally scalable energy source since the advent of fossil fuel.

Either you embrace them or get left behind.

Sure, try to cultivate a local industry, but doing it by slowing down the progress will only leave you further behind.


China is producing so much CO2 it destroys any impact this green tech may have.

Yes, but they set more ambitious goals than the EU and they're succeeding at moving energy generation to renewables and electrifying transportation: https://www.carbonbrief.org/analysis-chinas-co2-emissions-ha...

The chemical sector is the only reason why emissions haven't meaningfully declined yet, and I suspect it is in part due to conversion of supply chain for electrification.

The point is that they're paying a one-off cost (thus producing a peak) and they're already reaping rewards. Once they fully transition power generation to renewables and electrify transportation, what's left can be better regulated and CO2 recapture more easily scaled thanks to also R&D advances on CO2 recapture (e.g. capturing CO2 emissions from a chemical plant's exhaust). Then, even if you need more energy for CO2 recapture, you can keep scaling renewables further.


If everyone sets goals and starts work to reduce emissions in 2015 you dont get credit for failing to meet all your goals while secretly doing the opposite and trying to create as much growth as possible by scaling coal production. Like how would it be if my country was like ok we will reduce emissions in 2045 and then doubled our emissions in the next 5 years. Thats what China is doing.

It's hard to put my finger on why, but that's a really weird way to frame the situation.

For one thing, most of us don't control any CO₂ production we can turn off.

Also, even if/when we finally produced our last CO₂ molecule, the excess CO₂ will last for many centuries, and we really should get it back to lower levels.

With good capture tech, you can keep keep doing some important CO₂ producing activities.

Sure, it seems very unfeasible with current technology, but that is bound to improve as you work on it.


> Sure, it seems very unfeasible with current technology, but that is bound to improve as you work on it.

That not a good logical argument as there's no guarantee that every technology can be improved enough to be better than the alternatives. e.g. Steam engine tech is bound to improve as you work on it, but it's not going to be as efficient/useful as an internal combustion engine.

History is littered with examples of tech that has been surpassed by better ideas, so the lesson to learn is to optimise the best current solution. In this instance, the best (most efficient, practical) solution is to stop emitting so much CO2 rather than a long bet that capture tech will ever be feasible - with atmospheric concentrations being so low, the scale required makes it a non-starter.


> most of us don't control any CO₂ production we can turn off.

Uhm what? Driving? Flying? Heating?

> Sure, it seems very unfeasible with current technology, but that is bound to improve as you work on it.

Improve, yes. Break the laws of thermodynamics? No.

You can improve a perpetual motion machine but it's never going to be useful.


Should every car owner personally optimize the CO₂ emissions of their car?

I have definitely not argued against the laws of thermodynamics.

I'm sorry, I don't even know what you're arguing for.


>With good capture tech, you can keep keep doing some important CO₂ producing activities.

We're not asking people to stop breathing while there's no good DAC on the horizon, but I wonder what were the other important CO₂ producing activities you intend to do less of.

The following isn't breaking the law of thermodynamics; just wilfully ignoring it..

Gemini: >To offset a single typical gasoline car's emissions (around 4.6 metric tons CO2/year), you'd need a substantial fraction of a large DAC plant, as current large plants aim for 1 million tons/year, meaning many tiny DACs or a small portion of one large one; as of late 2025, the largest operating DAC (Mammoth) captures 36k tons, requiring about 80 such facilities to match one average ICE car's annual output, highlighting the massive scale-up needed, with projects like Texas's Stratos targeting 500k tons/year (equivalent to ~108 cars).


There are 3 or 4 laws of thermodynamics, and I can't figure out which one you might possibly be referring to.

I agree that current carbon capture tech is very inadequate, because very little effort has been put into it. How many orders of magnitude better it can get, we don't know until we try, but I don't see any fundamental reason it can't get good enough.

Once you have a solar powered capture machine park pumping CO₂ underground, it can keep working indefinitely at little cost.

> I wonder what were the other important CO₂ producing activities you intend to do less of.

All of them. This is well under way. I don't know how many decades it will take. But that's a separate problem.

The crucial thing to understand is that even if/when all CO₂ production has ended, the produced CO₂ won't disappear by itself for thousands of years!!

So you really need to actively remove it to get back to natural levels. Which is why I think carbon capture tech must be developed.


If you think about it, 2nd law* is the most relevant one because, after all, CO2, being so stable, is one of homo sapiens "favourite" waste materials (partition function yada-yada)

How did plants evolve to use it as nutrients. Solar power. since humans don't need to make fuel from air these days, maybe all of that solar power should go into compute?

.. I'm not saying any laws are broken, just that there are much better (=more efficient, more promising) ways to reduce global warming, like

https://en.wikipedia.org/wiki/Passive_daytime_radiative_cool...

It already works now (no airquotes), except for DAC entrepreneurs who try to hoard attention without having paid their "attention dues" first.

*And the one humans like to ignore because there seems to be so much wiggle room


> Should every car owner personally optimize the CO₂ emissions of their car?

Yes!! Obviously! Buy an electric/hybrid car or at least one with good fuel efficiency. Drive it in an efficient style. Try to avoid unnecessary journeys.


> Should every car owner personally optimize the CO₂ emissions of their car?

They can if they want to, maybe by buying a car with lower/zero emissions at the point of use?


Indeed. I've always had trouble picturing how to efficiently "unmix the cake" too. CO2 is rare and throughout the whole atmospheric column. What kind of concentration gradient can you get going to meaningfully pull it out from everywhere in human timescales? (Sorry if this nerd-snipes someone stronger with calculus than me.)


Plants capture CO2 from photo synthesis at huge scale. That seems like a great way to capture it at a higher concentration. We’d need to handle the organic matter before natural decomposition, but quite doable.


It’s even less energy efficient gathering up plant matter at this scale and permanently sequestering it, than getting it from the atmosphere. At least with the current technology required to harvest, move and process it. It’s why biomass is still a relatively niche ‘carbon offset’ technique.

It is also highly space inefficient and time consuming to grow and store (sequester).

Even if we converted all US cropland (and the US is one of the largest and most fertile countries for growing crops!) to growing trees, for example, we’d need multiple years of growth for every year of fossil carbon we currently release. And we’d all starve.

There is also generally less carbon by weight than you might imagine - even hardwood is typically more water than carbon when harvested, which is a big part of the problem.

To make it time efficient and also stable to store (not just rot and release the carbon immediately as methane or the like), it needs to be converted to a more stable form like charcoal or coke. Which further decreases efficiency and adds costs.

Near as we can tell, it is much better to just not release it (electric cars + solar?), or geo sequester it (olivine minerals seem promising!) or capture and sequester it directly (inefficient, but hey, there are techniques that should scale like pumping back into the original fossil aquifers!).

The biggest issue is economic (and hence political) - fossil fuels are energetically the equivalent of free money. It’s pretty hard to convince people to stop getting free money and pay money instead!


Extraction of the resource is not free. But with advances in solar panels and battery technology, the economic arguments for much fossil fuel use is fast disappearing. We were never going to make difficult decisions for the sakes of our grandchildren - we're much too selfish for that - but as renewables put more money in our pockets, we might just make the right decisions. Even if it is for the wrong reasons.


The issue is more than just being carbon neutral now, it’s paying back the energy released from the initial burning of the fossil fuel.

So it’s more like 2-3x non-fossil kWh for every 1x current fossil fuel kWh energy usage.

It’s a huge problem.


Diffusion and convection would do all the work. You dont need to worry. You can see the stuff mix around https://www.youtube.com/watch?v=-aSBfn6_pUY


I get what you're saying, but couldn't this be used in a place with high concentrations of CO2, like factory chimneys?


That would be “capture it at the point of release”


Yes, but these scrubbers need vast amounts of energy. Most of which emit carbon. We simply need to curb emissions. With the possible exception of basaltic rock weathering, DAC is not practical. Large DAC projects fail to reach forecasts, even when these forecasts for plants costing tens of millions of dollars only aim to extract global emissions of two or three seconds.


That same money could replace a lot more emissions with other sources of energy. How much solar and batteries does it buy? It’s always struck me as a moonshot project for people who don’t understand thermodynamics.

You could probably unstir the cream from the coffee with an elaborate chemical processing system costing more than what thousands of coffee makers and dairy cows cost.

The only CO2 removal project I’ve seen that seems like it might be viable is ocean fertilization. That’s not a thermodynamic free lunch. You’re letting solar powered microorganisms do it. But it needs to be studied and monitored to make sure it doesn’t ruin ocean ecosystems and that enough of the carbon actually does get sequestered to make it actually worthwhile.


Plants seem to manage it okay.


They don't, and they can't cheat physical realities either.

Plants only filter out very small amounts of CO2 from the air over relatively long timeframes. That's why crop-based biofuels require such enormous amounts of space.


'Very small'?? Depends on your perspective.

"The amount of CO2 removed from the atmosphere via photosynthesis from land plants is known as Terrestrial Gross Primary Production, or GPP. It represents the largest carbon exchange between land and atmosphere on the planet. GPP is typically cited in petagrams of carbon per year. One petagram equals 1 billion metric tons, which is roughly the amount of CO2 emitted each year from 238 million gas-powered passenger vehicles."

The article: https://www.technologynetworks.com/applied-sciences/news/pla...

The paper: doi: 10.1038/s41586-024-08050-3


Man-made carbon emissions amount to over 40 billion metric tons annually, according to a quick Google search. Worldwide terrestrial plant carbon exchange amounts to less than 2.5% of the CO2 humans release, if plants take in 1 billion tons per year.

From the perspective of averting climate change it is indeed very small.


The article linked by 8bitsrule says:

A team of scientists led by Cornell University, with support from the Department of Energy’s Oak Ridge National Laboratory, used new models and measurements to assess GPP from the land at 157 petagrams of carbon per year, up from an estimate of 120 petagrams established 40 years ago and currently used in most estimates of Earth’s carbon cycle.

Whether 157 billion tons or 120 billion tons, these numbers are large compared to anthropogenic releases. Of course most of this carbon is quickly cycled back out from land plants due to animals/bacteria/fungi consuming the biomass produced by land plants.


You still need to turn incredible amounts of biomass into charcoal or other stable forms of carbon to make a dent in atmospheric co2. It would take decades of hard work on gigantic scales to unburn and bury the fossil fuels we used.


That's the pay-off of our 150-year rush to monetize as much of the Earth's natural resources as possible -- while making stringent efforts to keep quiet knowledge - or suppress any efforts - to utilize the benefits of free solar energy.

Having polluted and despoiled much of the biosphere, of course we'll be donating our supposed wisdom and that hard work to the future generations that will enjoy the fruits of our labors and entreasurement.


They're pretty amazing for the amount of capital cost. $50 in seed and an acre of land can sequester several to over a dozen tons of carbon per year. It might not be space efficient but it requires basically zero infrastructure.


Which is something that when I try to explain to some 'environmentalists' do not get the point.

The other benefits of a biodiverse green belt are great, but if tomorrow I have a concrete system that captures CO2 at 10x the level of trees over lifetime in a similar density, guess what I would like my futuristic city to look like.


So then, is it really the CO2 that produces the cognitive impairment, or is the CO2 here just the proxy value that we are measuring, and the real reason for the cognitive impairment is low oxygen?


If the amount of CO2 is basically a rounding error, so too would be the reduction in oxygen.


Nitrogen also causes cognitive impairment. It is essentially a very weak anesthetic. If you can replace all of the nitrogen in your breathing gas with helium then you'll probably gain the equivalent of a couple IQ points (although obviously that isn't generally practical).


Nitrogen narcosis is especially relevant to divers. Recreational SCUBA diving is usually limited to around 30m depth and some divers will start noticing effects (basically like getting drunk) near that depth when using air in the tanks. This is why different mixtures (e.g. trimix) are used at increased depths, though there are other important effects of breathing air at pressure such as oxygen toxicity.


It’s also the metabolic changes in pH. CO2 is a proxy for ph as carbon dioxide acidifies the blood as it dissolves.


You could climb a mountain to test your hypothesis, keeping an eye on partial pressure of O2


We have a natural experiment. People in Denver aren't especially stupid.


What if one started emitting Nitrogen, Oxygen and Argon in the right proportions instead to get the mix right again?


I like the unconventional approach. A few minutes with GPT raises two issues:

1. We've raised CO2 from 280ppm to 420ppm, about a 50% increase. To dilute it back down would require 50% more total atmosphere. This would also raise the surface air pressure 1.5x.

2. How much heat is trapped is related to the absolute amount of CO2 in the atmosphere, not the fraction. So the diluted atmosphere would retain just as much heat.


Would it increase the steady state surface air pressure by 50%, or would more molecules offgas into outer space to compensate?

If the latter, it might actually work. Assuming they offgas at-proportion. Which they probably wouldn’t…


Interesting thought but you would need a lot of these gasses on the one hand and on the other hand it doesn’t help in working against the greenhouse effect. The greenhouse effect depends on the absolute amount of CO2 in the atmosphere, not the percentage. How much infrared light is absorbed by CO2 primarily depends on the amount of CO2 in the atmosphere.


My naive guess is that since CO2 takes up so few percentage, you would need an unfathomable amount of N, O, and Ar to get the mix right..?


We will unquestionably reach more than twice the CO2 concentration of pre-industrial levels (which was around 280 ppm; we're at 424 ppm now, it'll increase to beyond 560 ppm in most not-super-optimistic projections).

Do you really think it's both feasible and a good idea to release so much O2 and N2 to double the mass of the atmosphere? Or even just increase it by some appreciable fraction?

For the record, the atmosphere is around 5 150 000 000 000 000 metric tons. 5 quintillion kilograms. You're talking about producing metric exatons of gas.

Wikipedia says that there's 300 000 to a million gigatons of nitrogen in the earth's crust; that's 300 teratons to a petaton (https://en.wikipedia.org/wiki/Nitrogen#Occurrence). If you extracted LITERALLY ALL THE NITROGEN IN THE CRUST, converted it to nitrogen gas and released it into the atmosphere, and we use the extremely optimistic 1 petaton estimate, you'd have increased the mass of the atmosphere by roughly 1/5000. That means you'd have decreased the CO2 concentration in the atmosphere ... by roughly 1/5000. From 424 ppm to 423.92 ppm.


Think about the magnitude you’re talking about here. Every internal combustion engine on earth is emitting CO2. Every volcano, forest fire, coal power plant, etc. The atmosphere is massive. We’ve been, basically, doing our best to pump it full of CO2 for the last 150 years, and this is what we’ve got. Ignoring the chemical challenges with your idea here, the scale is impossibly gargantuan.


These gases are refined from air to begin with.


Do they need to be?


Where else are they going to come from? They’re all basic elements, either you separate them from air, or you have to go through an energy intensive process to liberate them from various chemicals they’ve been compounded into.

But guess what, all of those chemicals are extremely valuable, such as nitrates for fertiliser, water, and Argon does really react with anything (it’s a noble gas), which is why we use it as a shield gas in processes like welding.

So producing enough of those gases to somehow offset CO2 production would first require ludicrously large amounts of energy, and if we had access to that amount of clean energy we wouldn’t even be having this discussion. Plus it requires breaking down really valuable chemicals that we spend quite a lot of energy trying to produce or preserve anyway.


Where would that come from? It's not that we have some large untapped Oxygen or Nitrogen source laying around that is not part of the atmosphere.


Would that actually reduce the greenhouse effect? Intuitively, it seems analogous to putting on a less dense, but thicker blanket.


Lying with statistics while denying science and climate change. Small things sometimes make a big difference. Get the fuck out of here with this Dunning-Kruger effect bullshit.


And yet trees do this trivially?


My goodness, are you really saying, in effect, "I wish people over 50 would just hurry up and die"?!?

Good lord, expressing that kind of sentiment does not make for a useful and engaging conversation here on hacker news.


Clutch pearls


They took early steps to do so (ads) just recently. User response was as you'd expect.


Yes, but that is the standard methodology for startups in their boost phase. Burn vast piles of cash to acquire users, then find out at the end if a profitable business can be made of it.


It’s also the standard methodology for a number of scams.


Scams are our entire economy now. Do whatever you can to own a market, then squeeze your customers miserably once you have their loyalty. Cash out, kick the smoking remains of the company to the curb, use your payout to buy into another company, and repeat.


Kind of like paying more and more to Social Security and Medicare and getting less and less.

And the backstop on asset prices at the expense of the currency's purchasing power.


Most startups have big upfront capital costs and big customer acquisition costs, but small or zero marginal costs and COGS, and eventually the capital costs can slow down. That's why spending big and burning money to get a big customer base is the standard startup methodology. But OpenAI doesn't have tiny COGS: inference is expensive as fuck. And they can't stop capex spending on training because they'll be immediately lapped by the other frontier labs.

The reason people are so skeptical is that OpenAI is applying the standard startup justification for big spending to a business model where it doesn't seem to apply.


>But OpenAI doesn't have tiny COGS: inference is expensive as fuck.

No, inference is really cheap today, and people saying otherwise simply have no idea what they are talking about. Inference is not expensive.


Clearly not cheap enough.

> Even at $200 a month for ChatGPT Pro, the service is struggling to turn a profit, OpenAI CEO Sam Altman lamented on the platform formerly known as Twitter Sunday. "Insane thing: We are currently losing money on OpenAI Pro subscriptions!" he wrote in a post. The problem? Well according to @Sama, "people use it much more than we expected."

https://www.theregister.com/2025/01/06/altman_gpt_profits/


So just raise the price or decrease the cost per token internally.

Altman also said 4 months ago:

  Most of what we're building out at this point is the inference [...] We're profitable on inference. If we didn't pay for training, we'd be a very profitable company.
https://simonwillison.net/2025/Aug/17/sam-altman/


Definitely is a relatively newer innovation/reading. In the earlier days of the religion (thus Byzantine), Amphilochius of Iconium mentioned that the book of Revelation was widely held to be dubious, and Eusebius of Caesarea himself doubted its authenticity.


Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: