Hi, yes the ecological considerations should be made carefully. Let's look at some examples though, if we were to offset 100% of the next 100 years of anthropogenic CO2 emissions with olivine, it would only change the Mg-concentration of the ocean from something like 1296 to 1296.8 ppm and the bicarbonate content from 42 to 45 ppm. These changes are considered within the normal range of ocean water.
Most of the ocean though is experiencing catastrophic increases in ph and need some sort of anti-acid, which is what is amazing about the reaction from olivine. It almost sounds too good to be true, but the resulting solution from the reaction is alkaline. Its addition to the water actually deacidifies the ocean in the local area.
Further, one of the breakdown products in the reaction is silicate, which is a limiting factor for diatoms. Diatoms are particularly hit hard by climate change and are important in the base of the food chain. Diatoms provide food for the entire ecosystem from fish and birds. Diatoms themselves may also actually be responsible for moving significant amounts of biomass to the deep ocean as they sink (further reducing CO2). They also compete with dinoflagellates, which are the cause of red tides and could be useful in stemming their increased occurrence by counterbalancing their rapidly increasing populations.
That said, you are right that the addition of olivine should be carefully considered, especially for specific areas. We know already to avoid areas that are adapted to acid conditions, such as peatlands, because increased alkalinity could accelerate the breakdown of peat and speedup methane release.
Excellent and interesting reply, to my rather reflexive comment on your phrase in isolation.
I am heartened by the existence of this technology and news that it is proceeding, even with the lack of political help and funding at this stage of need.
A popular theme at this time is how people just have too much total impact - yet humanity as a whole might have enough comprehension and agency, to not only reduce and survive the worst outcomes, but achieve a positive and stabilizing impact on this diverse and precious world.
Most of the ocean though is experiencing catastrophic increases in ph and need some sort of anti-acid, which is what is amazing about the reaction from olivine. It almost sounds too good to be true, but the resulting solution from the reaction is alkaline. Its addition to the water actually deacidifies the ocean in the local area.
Further, one of the breakdown products in the reaction is silicate, which is a limiting factor for diatoms. Diatoms are particularly hit hard by climate change and are important in the base of the food chain. Diatoms provide food for the entire ecosystem from fish and birds. Diatoms themselves may also actually be responsible for moving significant amounts of biomass to the deep ocean as they sink (further reducing CO2). They also compete with dinoflagellates, which are the cause of red tides and could be useful in stemming their increased occurrence by counterbalancing their rapidly increasing populations.
That said, you are right that the addition of olivine should be carefully considered, especially for specific areas. We know already to avoid areas that are adapted to acid conditions, such as peatlands, because increased alkalinity could accelerate the breakdown of peat and speedup methane release.