I was imprecise. I was talking about the construction of optimal sorting networks. You're correct to point out that there are several approaches now for constructing sorting networks for arbitrary numbers of inputs, but as noted in that section, they all have some very important tradeoffs. I said, "...provide the best possible in-place sorting combinations for N elements, where N is currently < about 11"; the 11 there was a reference to this part from the second section of that article:
"For one to eleven inputs, minimal (i.e. size-optimal) sorting networks are known, and for higher values, lower bounds on their sizes S(n) can be derived inductively using a lemma due to Van Voorhis: S(n + 1) ≥ S(n) + ⌈log2(n)⌉. The first ten optimal networks have been known since 1969, with the first eight again being known as optimal since the work of Floyd and Knuth, but optimality of the cases n = 9 and n = 10 took until 2014 to be resolved.[11] An optimal network for size 11 was found in December of 2019 by Jannis Harder..."
The point I was trying to make is that sorting networks restrict your algorithm to a data-independent memory access pattern.
For some particular N, you might be able to find the smallest sorting network that sorts N elements. And then you might be able to find an even faster algorithm that sorts N elements using some strategy that's not equivalent to a sorting network (e.g., if your strategy does data-dependent memory access).
"For one to eleven inputs, minimal (i.e. size-optimal) sorting networks are known, and for higher values, lower bounds on their sizes S(n) can be derived inductively using a lemma due to Van Voorhis: S(n + 1) ≥ S(n) + ⌈log2(n)⌉. The first ten optimal networks have been known since 1969, with the first eight again being known as optimal since the work of Floyd and Knuth, but optimality of the cases n = 9 and n = 10 took until 2014 to be resolved.[11] An optimal network for size 11 was found in December of 2019 by Jannis Harder..."
Clearly I also should've said < ~12.