NG is not a viable aircraft fuel. It is possible that cryogenic LCH4 could be, as SpaceX uses it, but its energy mass density is not enough to drive a wholesale conversion, as LH2's is. Batteries are also far from viable as energy storage for transport aircraft.
Obviously, the LH2 fuel must be produced electrolytically, from electricity generated from renewable sources like solar, wind, or geothermal, not from NG as it all is today; I specifically called that out in the text that the above pretends to reply to, so it is hard to see why NG-generated H2 is mentioned here at all. LH2 generated on demand at airports does not incur transport losses.
Identically, NH3 is today produced by consuming NG and exhausting CO2, which process also must be replaced with catalytic means powered from renewable sources, and H2 generated electrolytically.
And, obviously there are conversion losses from solar/wind to electric to separated H2 and to chilled LH2, and then to accelerated air, just as there are losses extracting crude oil, transporting, refining, transporting again, burning, and exhausting it. End-to-end cost, including externalized environmental cost, is what matters. We need a carbon tax to help drive conversion. But the favorable energy mass density of LH2 overrides enormous conversion losses, which is the whole point.
Obviously, the LH2 fuel must be produced electrolytically, from electricity generated from renewable sources like solar, wind, or geothermal, not from NG as it all is today; I specifically called that out in the text that the above pretends to reply to, so it is hard to see why NG-generated H2 is mentioned here at all. LH2 generated on demand at airports does not incur transport losses.
Identically, NH3 is today produced by consuming NG and exhausting CO2, which process also must be replaced with catalytic means powered from renewable sources, and H2 generated electrolytically.
And, obviously there are conversion losses from solar/wind to electric to separated H2 and to chilled LH2, and then to accelerated air, just as there are losses extracting crude oil, transporting, refining, transporting again, burning, and exhausting it. End-to-end cost, including externalized environmental cost, is what matters. We need a carbon tax to help drive conversion. But the favorable energy mass density of LH2 overrides enormous conversion losses, which is the whole point.