What about CPU-only loads? If one wants to write code that'll eventually run in both CPU and GPU but in the short-to-mid term will only be used in CPU? Since JAX natively support CPU (with numpy backend), but CuPy doesn't, this seems like a potential problem for some.
Just prepare the input on NumPy or CuPy, and then you can just feed it to NumPy APIs. NumPy functions will handle itself if the input is NumPy ndarray, or dispatch the execution to CuPy if the input is CuPy ndarray.
There is but then you're using two separate libraries, that seems like a fragile point of failure compared to just using jax. But regardless since jax will use different backends anyway, it's arguably not any worse (but it ends up being your responsibility to ensure correctness as opposed to the jax team).