I don't think it's FOSS at the moment. I actually would build two or three of these units on my own and could provide some feedback along the way. My definition of open source means that I should be able to do so.
Unfortunately, the gDrive files are not providing enough information for me to build one of these in a DIY manner. I didn't find enough information on the hardware side, no BOM, no hardware documentation. I think that, if the author would like to actually boost DIY adoption, it'd be worth having a step by step assembly guide. At the same time, when reading the page, I had a feeling like it's more supposed to be a way of advertising a future commercial product, not really focusing on the FOSS/DIY side.
The software is provided, but from my experience with such projects, it's maybe half of the minimum information needed to build a full fledged device.
I like the project and would love to build it in the near future though.
Under "source code", there's a link to a GDrive with a ton of design files and documentation, as well as source code.
These are licensed CC BY-NC-SA 4.0, so depending on your personal definitions, they may or may not be "open source" (IMO they're open source but not FOSS but I've seen others equate open source with FOSS).
As a community we need to do some thinking on how open source may sensibly be applied to hardware. Unfortunately Prusa, who used to be a real champion, has departed from the assumed True Path, and they have discussed their reasons, which are largely valid. That said their design at a more fundamental level has also departed from a maintainable, simple and elegant design.
The purpose of the source code is to enable maintenance, not cloning, I say that on the website. That is this context, there are many others. It improves the economics because the machine lasts longer and there is no planned obsolescence. People are welcome to make their own units from the source if they have the skill, but although it would be fun, I don't really have time to make it easy. Some day there may be a kit which is very economical but it will still take a whole day of work to assemble, probably.
Me too, when reading "open source" I was expecting some design docs or the like.
Aside from the general confusion of the website, I haven't been able to find some of the most important information. For example, there's no diagram or immediate explanation of the general working principle and airflow path. The heat exchanger itself is published only as-is for those designs, while the author writes that he uses a custom python script tuned for the design size and his 3d printer to generate it.
When i saw this I immediately thought of studying it and reuse some of its designs for my custom use case, which does not appear to be currently possible.
At first glance it appears to be "open source" in the sense that you can buy it, but if and when something breaks you can print/reorder it easily.