Hacker News new | past | comments | ask | show | jobs | submit login

I am working at an AI company that is not OpenAI. We have found ways to modularize training so we can test on narrower sets before training is "completely done". That said, I am sure there are plenty of ways others are innovating to solve the long training time problem.



Perhaps the real issue is that learning takes time and that there may not be a shortcut. I'll grant you that argument's analogue was complete wank when comparing say the horse and cart to a modern car.

However, we are not comparing cars to horses but computers to a human.

I do want "AI" to work. I am not a luddite. The current efforts that I've tried are not very good. On the surface they offer a lot but very quickly the lustre comes off very quickly.

(1) How often do you find yourself arguing with someone about a "fact"? Your fact may be fiction for someone else.

(2) LLMs cannot reason

A next token guesser does not think. I wish you all the best. Rome was not burned down within a day!

I can sit down with you and discuss ideas about what constitutes truth and cobblers (rubbish/false). I have indicated via parenthesis (brackets in en_GB) another way to describe something and you will probably get that but I doubt that your programme will.


This is literally just the scaling laws, "Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets. This provides an efficient way for practitioners and researchers alike to compare pretraining decisions involving optimizers, datasets, and model architectures"

https://arxiv.org/html/2410.11840v1#:~:text=Scaling%20laws%2....




Join us for AI Startup School this June 16-17 in San Francisco!

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: