The output of the quartz oscillator is a high frequency electrical signal which is read by a digital frequency divider then fed back into a motor.
> The data line output from such a quartz resonator goes high and low 32768 times a second. This is fed into a flip-flop (which is essentially two transistors with a bit of cross-connection) which changes from low to high, or vice versa, whenever the line from the crystal goes from high to low. The output from that is fed into a second flip-flop, and so on through a chain of 15 flip-flops, each of which acts as an effective power of 2 frequency divider by dividing the frequency of the input signal by 2. The result is a 15-bit binary digital counter driven by the frequency that will overflow once per second, creating a digital pulse once per second.
> The data line output from such a quartz resonator goes high and low 32768 times a second. This is fed into a flip-flop (which is essentially two transistors with a bit of cross-connection) which changes from low to high, or vice versa, whenever the line from the crystal goes from high to low. The output from that is fed into a second flip-flop, and so on through a chain of 15 flip-flops, each of which acts as an effective power of 2 frequency divider by dividing the frequency of the input signal by 2. The result is a 15-bit binary digital counter driven by the frequency that will overflow once per second, creating a digital pulse once per second.
https://en.wikipedia.org/wiki/Quartz_clock