Oh yes one could provide a repetition penalty for example - the issue is it's not just repetition that's the issue. I find it rather forgets what it already saw, and so hence it repeats stuff - it's probably best to backtrack, then delete the last few rows in the KV cache.
Another option is to employ min_p = 0.05 to force the model not to generate low prob tokens - it can help especially in the case when the 1.58bit model generates on average 1/8000 tokens or so an "incorrect" token (for eg `score := 0`)
Another option is to employ min_p = 0.05 to force the model not to generate low prob tokens - it can help especially in the case when the 1.58bit model generates on average 1/8000 tokens or so an "incorrect" token (for eg `score := 0`)