Ye lower temp is also good :) Tbh its all trial and error - I found temp=1.5, min_p=0.1 to be very useful for pass@k type workloads - ie calling the LLM multiple times and aggregating.
temp=0 is also good for singular outputs. For classification tasks, it's better to actually inspect the logits.
But my goto setting is always setting min_p at least 0.01 or 0.05! It vastly suppresses incorrect rare random tokens from being created, and it helps massively!
temp=0 is also good for singular outputs. For classification tasks, it's better to actually inspect the logits.
But my goto setting is always setting min_p at least 0.01 or 0.05! It vastly suppresses incorrect rare random tokens from being created, and it helps massively!