Yeah you're probably right about the clocks but I hope that wouldn't stop people from trying :)
>The experiment was conducted at 7K so the molecule
Br is good at sticking to Ag so I suspect the 7K is mainly (besides issues connected to their AFM^W STM setup) because the Euro dudes love ORNL's cryo engineering :)
Br's orbitals are filled here because it's covalently bonded to a carbon, so it's basically krypton. Experiments with moving atoms around on surfaces with STMs are always done at cryogenic temperatures because that's the only way to do them.
>. Hence, the Br atoms kept the molecules on track, likely because their
interaction with the surface substantially contributed to the barrier for molecular rotation
Yeah that's a reason people prefer AFM (but then they won't be able to do manipulation)?
[Br- is a "good leaving group", not so much at 7K maybe. You are also right in that, above all, they don't want their molecule sticking (irreversibly) to the (tungsten) tip ]
>The experiment was conducted at 7K so the molecule
Br is good at sticking to Ag so I suspect the 7K is mainly (besides issues connected to their AFM^W STM setup) because the Euro dudes love ORNL's cryo engineering :)