1. As implementation phase gets faster, the bottleneck could actually switch to PM. In which case, changes will be more serial, so a lot fewer conflicts to worry about.
2. I think we could see a resurrection of specs like TLA+. Most engineers don't bother with them, but I imagine code agents could quickly create them, verify the code is consistent with them, and then require fewer full integration tests.
3. When background agents are cleaning up redundant code, they can also clean up redundant tests.
4. Unlike human engineering teams, I expect AIs to work more efficiently on monoliths than with distributed microservices. This could lead to better coverage on locally runnable tests, reducing flakes and CI load.
5. It's interesting that even as AI increases efficiency, that increased velocity and sheer amount of code it'll write and execute for new use cases will create its own problems that we'll have to solve. I think we'll continue to have new problems for human engineers to solve for quite some time.
> 2. I think we could see a resurrection of specs like TLA+.
I think so too. But it's not gonna be TLA+. It's just gonne be programming languages that allow to catch problems with their typesystem much more comprehensively, allowing AI to iterate quickly without even having to run unit-tests.
While developers don't want to spend the time to learn it and prefer easy-to-learn languages such as golang, LLMs only have to be trained once and then you can reap the benefits permanently.
1. As implementation phase gets faster, the bottleneck could actually switch to PM. In which case, changes will be more serial, so a lot fewer conflicts to worry about.
2. I think we could see a resurrection of specs like TLA+. Most engineers don't bother with them, but I imagine code agents could quickly create them, verify the code is consistent with them, and then require fewer full integration tests.
3. When background agents are cleaning up redundant code, they can also clean up redundant tests.
4. Unlike human engineering teams, I expect AIs to work more efficiently on monoliths than with distributed microservices. This could lead to better coverage on locally runnable tests, reducing flakes and CI load.
5. It's interesting that even as AI increases efficiency, that increased velocity and sheer amount of code it'll write and execute for new use cases will create its own problems that we'll have to solve. I think we'll continue to have new problems for human engineers to solve for quite some time.