> Entanglement is just a statistical effect in our measurements — we can’t say what is happening or why that occurs. We can calculate that effect because we’ve fitted models, but that’s it.
Bell's theorem was a prediction from math before people found ways to measure and confirm it. A model based on fitting to observations would have happened in the other order.
> A model based on fitting to observations would have happened in the other order.
We’d already had models which said that certain quantities were conserved in a system — and entanglement says that is true of certain systems with multiple particles.
To repeat myself:
> Entanglement is just a statistical effect in our measurements — we can’t say what is happening or why that occurs.
Bell’s inequality is just a way to measure that correlation, ie, statistical effect — and I think it’s supporting my point the way to measure entanglement is via statistical effect.
ER=EPR is an example of a model that tries to explain what and why of entanglement.
Bell's theorem was a prediction from math before people found ways to measure and confirm it. A model based on fitting to observations would have happened in the other order.