I wouldn't say model development and performance is "leveling off", and in fact didn't write that. I'd say that tons more funding is going into the development of many models, so one would expect performance increases unless the paradigm was completely flawed at it's core, a belief I wouldn't personally profess to. My point was moreso the following: A couple years ago it was easy to find people saying that all we needed was to add in video data, or genetic data, or some other data modality, in the exact same format that the models trained on existing language data were, and we'd see a fast takeoff scenario with no other algorithmic changes. Given that the top labs seem to be increasingly investigating alternate approaches to setting up the models beyond just adding more data sources, and have been for the last couple years(Which, I should clarify, is a good idea in my opinion), then the probability of those statements of just adding more data or more compute taking us straight to AGI being correct seems at the very least slightly lower, right?
Rather than my personal opinion, I was commenting on commonly viewed opinions of people I would believe to have been caught up in hype in the past. But I do feel that although that's a benchmark, it's not necessarily the end-all of benchmarks. I'll reserve my final opinions until I test personally, of course. I will say that increasing the context window probably translates pretty well to longer context task performance, but I'm not entirely convinced it directly translates to individual end-step improvement on every class of task.
Rather than my personal opinion, I was commenting on commonly viewed opinions of people I would believe to have been caught up in hype in the past. But I do feel that although that's a benchmark, it's not necessarily the end-all of benchmarks. I'll reserve my final opinions until I test personally, of course. I will say that increasing the context window probably translates pretty well to longer context task performance, but I'm not entirely convinced it directly translates to individual end-step improvement on every class of task.