Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

You could turn the argument around and say that math must be a science because it builds on falsifiable hypotheses and makes testable predictions.

In the end arguing about whether mathematics is a science or not makes no more sense than bickering about tomates being fruit; can be answered both yes and no using reasonable definitions.



> In the end arguing about whether mathematics is a science or not makes no more sense than bickering about tomates being fruit

That's the thing, though — It does make sense, and it's an important distinction. There is a reason why "mathematical certainty" is an idiom — we collectively understand that maths is in the business of irrefutable truths. I find that a large part of science skepticism comes from the fundamental misunderstanding that science is, like maths, in the business of irrefutable truths, when it is actually in the business of temporarily holding things as true until they're proven false. Because of this misunderstanding, skeptics assume that science being proven wrong is a deathblow to science itself instead of being an integral part of the process.


In general you aren't testing as an empiricist though, you are looking for a rational argument to prove or disprove something.


The practical experience of doing mathematics is actually quite close to a natural science, even if the subject is technically a "formal science* according to the conventional meanings of the terms.

Mathematicians actually do the same thing as scientists: hypothesis building by extensive investigation of examples. Looking for examples which catch the boundary of established knowledge and try to break existing assumptions, etc. The difference comes after that in the nature of the concluding argument. A scientist performs experiments to validate or refute the hypothesis, establishing scientific proof (a kind of conditional or statistical truth required only to hold up to certain conditions, those upon which the claim was tested). A mathematician finds and writes a proof or creates a counter example.

The failure of logical positivism and the rise of Popperian philosophy is obviously correct that we can't approach that end process in the natural sciences the way we do for maths, but the practical distinction between the subjects is not so clear.

This is all without mention the much tighter coupling between the two modes of investigation at the boundary between maths and science in subjects like theoretical physics. There the line blurs almost completely and a major tool used by genuine physicists is literally purusiing mathematical consistency in their theories. This has been used to tremendous success (GR, Yang-Mills, the weak force) and with some difficulties (string theory).

————

Einstein understood all this:

> If, then, it is true that the axiomatic basis of theoretical physics cannot be extracted from experience but must be freely invented, can we ever hope to find the right way? Nay, more, has this right way any existence outside our illusions? Can we hope to be guided safely by experience at all when there exist theories (such as classical mechanics) which to a large extent do justice to experience, without getting to the root of the matter? I answer without hesitation that there is, in my opinion, a right way, and that we are capable of finding it. Our experience hitherto justifies us in believing that nature is the realisation of the simplest conceivable mathematical ideas. I am convinced that we can discover by means of purely mathematical constructions the concepts and the laws connecting them with each other, which furnish the key to the understanding of natural phenomena. Experience may suggest the appropriate mathematical concepts, but they most certainly cannot be deduced from it. Experience remains, of course, the sole criterion of the physical utility of a mathematical construction. But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed. - Albert Einstein


An alternative to abstraction is to use iconic forms and boundary math (containerization and void-based reasoning). See Laws of Form and William Bricken's books recently. Using a unary operator instead of binary (Boolean) does indeed seem simpler, in keeping with Nature. Introduction: https://www.frontiersin.org/journals/psychology/articles/10....




Consider applying for YC's Winter 2026 batch! Applications are open till Nov 10

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: