The R1 GitHub repo is way more exciting than I had thought.
They aren't only open sourcing R1 as an advanced reasoning model. They are also introducing a pipeline to "teach" existing models how to reason and align with human preferences. [2] On top of that, they fine-tuned Llama and Qwen models that use this pipeline; and they are also open sourcing the fine-tuned models. [3]
This is *three separate announcements* bundled as one. There's a lot to digest here. Are there any AI practitioners, who could share more about these announcements?
[2] We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities. We believe the pipeline will benefit the industry by creating better models.
[3] Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community.
I see it in the "2. Model Summary" section (for [2]). In the next section, I see links to Hugging Face to download the DeepSeek-R1 Distill Models (for [3]).
Is o3 that much better than o1? It can solve that Arc-AGI benchmark thing at huge compute cost, but even with o1, the main attraction (for me) seems to me that it can spit out giant blocks of code, following huge prompts.
I'm kinda ignorant, but I'm not sure in what way is o3 better.
> It can solve that Arc-AGI benchmark thing at huge compute cost
Considering DeepSeek v3 trained for $5-6M and their R1 API pricing is 30x less than o1, I wouldn’t expect this to hold true for long. Also seems like OpenAI isn’t great at optimization.
4o is more expensive than DeepSeek-R1, so…? Even if we took your premise as true and we say they are as good as DeepSeek, this would just mean that OpenAI is wildly overcharging its users.
now openai has no other choice than shipping a cheaper version of o1 and o3. The alternative is everyone using r1 (self hosted or via openrouter, nebius AI, together AI and co)
I think open source AI has a solid chance of winning if the Chinese keep funding it with great abandon as they have been. Not to mention Meta of course, whose enthusiasm for data center construction shows no signs of slowing down.
They aren't only open sourcing R1 as an advanced reasoning model. They are also introducing a pipeline to "teach" existing models how to reason and align with human preferences. [2] On top of that, they fine-tuned Llama and Qwen models that use this pipeline; and they are also open sourcing the fine-tuned models. [3]
This is *three separate announcements* bundled as one. There's a lot to digest here. Are there any AI practitioners, who could share more about these announcements?
[2] We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities. We believe the pipeline will benefit the industry by creating better models.
[3] Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community.